您的当前位置:首页正文

python如何在二维图像上进行卷积

2024-08-01 来源:化拓教育网

说明

1、对于二维矩阵,卷积时卷积核由左向右、由上向下滑动,对应位置要求加权和。

2、一般图片为RGB三通道,需要每个通道卷积,每个通道都是二维矩阵。灰度图只有一个通道,直接卷起即可。

实例

def my_conv2d(inputs: np.ndarray, kernel: np.ndarray):
    # 计算需要填充的行列数目,这里假定mode为“same”
    # 一般卷积核的hw都是奇数,这里实现方式也是基于奇数尺寸的卷积核
    h, w = inputs.shape
    kernel = kernel[::-1, ...][..., ::-1]  # 卷积的定义,必须旋转180度
    h1, w1 = kernel.shape
    h_pad = (h1 - 1) // 2
    w_pad = (w1 - 1) // 2
    inputs = np.pad(inputs, pad_width=[(h_pad, h_pad), (w_pad, w_pad)], mode="constant", constant_values=0)
    outputs = np.zeros(shape=(h, w))
    for i in range(h):  # 行号
        for j in range(w):  # 列号
            outputs[i, j] = np.sum(np.multiply(inputs[i: i + h1, j: j + w1], kernel))
return outputs

以上就是python在二维图像上进行卷积的方法,希望对大家有所帮助。更多Python学习指路:

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。