您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页2020高考数学复习专题42 等比数列(解析版)

2020高考数学复习专题42 等比数列(解析版)

来源:化拓教育网
专题42

专题知识梳理1.等比数列的定义等比数列

一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.2.等比数列的通项公式一般地,对于等比数列{an}的第n项an,有公式an=a1qn1,这就是等比数列{an}的通项公式,其中a1

为首项,q为公比.第二通项公式为:an=amqn

3.等比数列的前n项和公式-m

a1(1-qn)a1-anq等比数列{an}的前n项和公式:Sn=(q≠1)或Sn=(q≠1).1-q1-q注意:(1)当q=1时,该数列是各项不为零的常数列,Sn=na1;(2)有关等比数列的求和问题,当q不能确定时,应分q=1,q≠1来讨论.4.等比数列的性质(1)若a,G,b成等比数列,则称G为a和b的等比中项,则G2=ab.(2)等比数列{an}中,若m+n=k+l(m,n,k,l∈N*),则有am·an=ak·al,特别地,当m+n=2p时,am·an

=a2p.(3)设Sm是等比数列{an}的前n项和,则Sm,S2m-Sm,S3m-S2m满足关系式(S2m-Sm)2=Sm·(S3m-S2m).(4)等比数列的单调性,若首项a1>0,公比q>1或首项a1<0,公比0考点探究考向1等比数列中基本量的计算【例】(1)(2018苏州模拟)已知等比数列{an}的前n项和为Sn,且值为.S61915

,a4a2,则a3的S388(2)(2018年新课标I卷)记Sn为数列{an}的前n项和,若Sn=2an+1,则S6=__________.【解析】(1)观察得公比q不为1,将条件代入前n项和为Sn及通项公式,得a1(1q6)19193159322

,,故。,1q,qaqa=aq(q1),a11311

4a1(1q3)8828(2)根据Sn=2an+1,可得Sn+1=2an+1+1,两式相减得an12an12n,即an+1=2an,当󰝊ﵰഀ时,1(126)所以数列{an}是以—1为首项,以2为公比的等比数列,所以S6S1a12a11,a11,63,12故答案是—63.题组训练11.已知{an}是等比数列,a2=2,a5=,则公比q等于4n1

.4111aq,3

【解析】由通项公式ana1q,得14q,故q。28aq21

2.设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=____.2a13,【解析】当q=1时,S2=3,S4=15得∴6=15矛盾;当q≠1时,4a115a1+a1q3,a1(1+q)3,24

q4,a1(1q)2

15a1(1q)(1q)151q∴S6S4a5a6S4a1q4(1q)153q41534263。3.设等比数列an满足a1+a2=–1,a1–a3=–3,则a4=___________.【解析】设等比数列的公比为q,很明显q1,结合等比数列的通项公式和题意可得②a1a2a11q1,①,由可得:q2,代入①可得a11,2

aaa1q3,②①113

由等比数列的通项公式可得:a4a1q8.4.(2018·南通模拟)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+6a4,则a3的值为。3

【解析】将an=a1qn-1代入,得a1qa1q6a1q,a1q0,qq60,∴q3,qa3=a2q=3。753422

3,∴考向2等比数列的性质【例】(1)在等比数列{an}中,各项均为正值,且a6a10+a3a5=41,a4a8=5,则a4+a8=____;(2)等比数列{an}的首项a1=-1,前n项和为Sn,若S1031=,则公比q=____.S53222222

【解析】(1)由a6a10+a3a5=41及a6a10=a28,a3a5=a4,得a4+a8=41.∵a4a8=5,∴(a4+a8)=a4+2a4a8

+a28=41+2×5=51.又an>0,∴a4+a8=51.S10-S5S311(2)由10=,a1=-1知公比q≠1,则可得=-.由等比数列前n项和的性质知S5,S10-S5,S53232S5

S15-S10成等比数列,且公比为q5,故q5=-11,q=-.322题组训练8271.在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为____.33827【解析】设插入的三个数依次为a2,a3,a4,则a2a4=a32=×,33827827∴a2a3a4=××=486。33332.等比数列{an}中,a1>0,a2a4+2a3a5+a4a6=36,则a3+a5=____.【解析】由等比数列下标性质,得a2a4=a32,a4a6=a52,由a2a4+2a3a5+a4a6=36,得a32+a52+2a3a5=36,,

(a3+a5)2=36,由a1>0,a3=a1q2>0,同理a5>0,故a3+a5=6。3.在正项等比数列{an}中,若a3a78,则log2a1log2a2log2a10=【解析】由等比数列{an}知,a1a10a2a9a3a78,故.log2a1log2a2log2a10=log2a1a2a10log2(a1a10)(a2a9)(a5a6)log28515。*

4.已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn1qSn1,其中q>0,nN.若2a2,a3,a22成等差数列,则{an}的通项公式为。【解析】由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,两式相减得到an+2=qan+1,n³1.又由S2=qS1+1得到a2=qa1,故an+1=qan对所有n³1都成立.所以,数列{an}是首项为1,公比为q的等比数列,从而an=qn-1.5.等比数列{an}共有奇数项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1=________.1【解析】设等比数列{an}共有2k+1(k∈N*)项,则a2k+1=192,则S奇=a1+a3+…+a2k-1+a2k+1=(a2+a4

qa1-a2k+1q2a1-192×-221126+…+a2k)+a2k+1=S偶+a2k+1=-+192=255,解得q=-2,而S奇===255,qq1-q21--22解得a1=3.考向3等比数列的判定与证明【例】已知等差数列{an}的公差为2,其前n项和Sn=pn2+2n,n∈N*.(1)求p的值及an;1(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn.求证:数列{Tn+}为等比数列.6n(n-1)【解析】(1)Sn=na1+d=na1+n(n-1)=n2+(a1-1)n.又Sn=pn2+2n,n∈N*,∴p=1,a1-12=2,a1=3,∴an=3+(n-1)2=2n+1.(2)证明:∵b3=a1=3,b4=a2+4=9,∴q=3,∴bn=b3qn3=3×3n3=3n2,-

3n11nTn+(1-3)3n-1n

1136=6=3(n≥2),∴b1=,∴Tn=3=,∴Tn+=,∴366613n-11-3Tn-1+661∴数列{Tn+}为等比数列.6题组训练1.已知数列{an}的前n项和为Sn,3Sn=an-1(n∈N*).(1)求a1,a2;(2)求证:数列{an}是等比数列;(3)求an和Sn.11【解析】(1)由3S1=a1-1,得3a1=a1-1,∴a1=-.又3S2=a2-1,即3a1+3a2=a2-1,得a2=.24an1111(2)证明:当n≥2时,an=Sn-Sn-1=(an-1)-(an-1-1),得=-,∴{an}是首项为-,公比为3322an-1

1-的等比数列.2111-(-)n

(-)21n112(3)由(2)可得an=(-),Sn==-[1-(-)n].23211-(-)22.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明:数列{bn}是等比数列;(2)求数列{an}的通项公式.【解析】Sn+1=4an+2,Sn=4an-1+2,上式减下式,得an+1=4an-4an-1,∴an+1-2an=2(an-2an-1).∵bn=an+1-2an,∴bn=2bn

-1

(1)由a1=1及Sn+1=4an+2,得a1+a2=S2=4a1+2.∴a2=5,∴b1=a2-2a1=3.又,故{bn}是首项b1=3,公比为2的等比数列.(2)由(1)知bn=an+1-2an=3·2n-1

anan+1an313a1,∴+-n=,故2n是首项为,公差为的等差数列.∴n=+242n22n12433n-1-

(n-1)·=,故an=(3n-1)·2n2.443.设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).(1)求a2,a3的值;(2)求证:数列{Sn+2}是等比数列.【解析】(1)∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8.综上,a2=4,a3=8.(2)证明a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②①-②得nan=(n-1)Sn-(n-2)Sn-1+2=n(Sn-Sn-1)-Sn+2Sn-1+2=nan-Sn+2Sn-1+2.∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,∴Sn+2=2(Sn-1+2).Sn+2∵S1+2=4≠0,∴Sn-1+2≠0,∴=2,Sn-1+2故{Sn+2}是以4为首项,2为公比的等比数列.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务