您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页2013挑战中考压轴题1——80页书稿(专题)

2013挑战中考压轴题1——80页书稿(专题)

来源:化拓教育网
如图1,已知抛物线y14x214(b1)xb4(b是实数且b>2)与x轴的正半轴分别交

于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.

(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示); (2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

图1

如图1,已知抛物线的方程C1:y1m(x2)(xm) (m>0)与x轴交于点B、C,与

y轴交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2, 2),求实数m的值; (2)在(1)的条件下,求△BCE的面积;

(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

图1

直线y13x1分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°

后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.

(1) 写出点A、B、C、D的坐标;

(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;

(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

图1

Rt△ABC在直角坐标系内的位置如图1所示,反比例函数ykx(k0)在第一象限内的

图象与BC边交于点D(4,m),与AB边交于点E(2,n),△BDE的面积为2. (1)求m与n的数量关系;

(2)当tan∠A=

12时,求反比例函数的解析式和直线AB的表达式;

(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO与△EFP 相似,求点P的坐标.

图1

如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3). (1)直接写出抛物线的对称轴、解析式及顶点M的坐标; (2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;

(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

图1 图2

如图1,已知点A (-2,4) 和点B (1,0)都在抛物线ymx2mxn上.

(1)求m、n;

(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;

(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.

2

图1

如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点. (1)求此抛物线的解析式;

(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.

,

图1

如图1,△ABC中,AB=5,AC=3,cosA=

310.D为射线BA上的点(点D不与点B

重合),作DE//BC交射线CA于点E..

(1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域; (2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度;

(3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.

图1

备用图

备用图

1.2 因动点产生的等腰三角形问题

如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置. (1)求点B的坐标;

(2)求经过A、O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.

图1

如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.

(1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值;

(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H所经过的路长(不必写解答过程).

图1

图2

如图1,已知一次函数y=-x+7与正比例函数y4x的图象交于点A,且与x轴交于

3点B.

(1)求点A和点B的坐标; (2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.

①当t为何值时,以A、P、R为顶点的三角形的面积为8?

②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.

图1

如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.

(1)求证:MN∶NP为定值;

(2)若△BNP与△MNA相似,求CM的长; (3)若△BNP是等腰三角形,求CM的长.

图1

如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.

(1)求y关于x的函数关系式;

(2)若m=8,求x为何值时,y的值最大,最大值是多少?

(3)若y12m,要使△DEF为等腰三角形,m的值应为多少?

图1

已知:如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交AB于点D,连结DC,过点D作DE⊥DC,交OA于点E.

(1)求过点E、D、C的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为

65,

那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在成立,请说明理由.

图1

1.3 因动点产生的直角三角形问题

如图1,抛物线y38x234x3与x轴交于A、B两点(点A在点B的左侧),与y

轴交于点C.

(1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;

(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式. ....

图1

在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).

(1)当k=-2时,求反比例函数的解析式;

(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;

(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.

(1)求抛物线的函数表达式; (2)求直线BC的函数表达式;

(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.

①当线段PQ34AB时,求tan∠CED的值;

②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.

图1

设直线l1:y=k1x+b1与l2:y=k2x+b2,若l1⊥l2,垂足为H,则称直线l1与l2是点H的直角线.

(1)已知直线①yy2x412x2;②yx2;③y2x2;④

和点C(0,2),则直线_______和_______是点C的直角线

(填序号即可);

(2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式.

图1

在平面直角坐标系xOy中,抛物线ym14x25m4xm3m2与x轴的交点

2分别为原点O和点A,点B(2,n)在这条抛物线上.

(1)求点B的坐标;

(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动).

①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;

②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.

图1

如图1,已知A、B是线段MN上的两点,MN4,MA1,MB1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设ABx.

(1)求x的取值范围;

(2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积?

图1

如图1,直线y43x4和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).

(1)试说明△ABC是等腰三角形;

(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.

① 求S与t的函数关系式;

② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;

③在运动过程中,当△MON为直角三角形时,求t的值.

图1

1.4 因动点产生的平行四边形问题

如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=_______,PD=_______;

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.

图1 图2

如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?

(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.

图1

已知平面直角坐标系xOy(如图1),一次函数y在正比例函数y2

34x3的图象与

y轴交于点A,点M

32x的图象上,且MO=MA.二次函数

y=x+bx+c的图象经过点A、M. (1)求线段AM的长;

(2)求这个二次函数的解析式;

(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数y34x3的图象上,且

四边形ABCD是菱形,求点C的坐标.

图1

将抛物线c1:y3x23沿x轴翻折,得到抛物线c2,如图1所示. (1)请直接写出抛物线c2的表达式;

(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.

①当B、D是线段AE的三等分点时,求m的值;

②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

图1

如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点. (1)求抛物线的解析式;

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;

(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

图1

图2

在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系. (1)求点B的坐标;

(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;

(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.

图1

图2

如图1,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).

(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);

(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);

(3)当(2)中 的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.

图1

如图1,抛物线yx2x3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.

(1)直接写出A、B、C三点的坐标和抛物线的对称轴;

(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF//DE交抛物线于点F,设点P的横坐标为m.

①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

②设△BCF的面积为S,求S与m的函数关系.

2

图1

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务