制造商园地 风电场集电线路防雷保护的研究 邓渝亭 陈 亮2 (1.河海大学能源-9电气学院,南京 210098; 2.中国能源建设集团辽宁电力勘测设计院有限公司,沈阳 110179) 摘要风能是一种可再生的清洁能源,大力发展清洁能源是世界各国的战略选择。雷害长期 困扰电网,近年来呈逐年加剧之势。线路频繁遭受雷击,不仅影响风机和电气设备正常运行,而 且危及电网安全。本文以投运风电场线路雷击记录为样本,分析了各个风机避雷器动作频次与地 形地貌、不同季节、线路相别的相关性,探讨雷电天气断路器跳闸原因和集电线路雷电过电压类 型。提出了适合风电场集电线路的避雷措施,并给出意见和建议。 关键词:风电场;集电线;防雷保护 随着国家对风力发电的鼓励、国家财政对风力 春夏季,当有雷雨时经常发生线路非正常跳闸。 发电补贴的落实以及特高压建设带来的弃风问 题的缓解,风电装机有望在未来几年内保持快速增 2 风电线路雷击事故分析 长。风电场大多采用35kV架空线路。引起输电线 2.1 线路避雷器动作数据统计分析 路故障跳闸的原因有很多,其中因雷击引起的跳闸 根据风电场的巡检卡与防雷检测报告统计得 次数位居所有跳闸原因之首【l】。据统计,因雷击线 出,某风电场2014年1—9月各台风机避雷器动作 路造成的跳闸事故占电网总事故的60%以上L2J。对 统计如图1所示,各月避雷器动作统计如图2所示。 于输电线路所拥有的防雷电能力,在实际工程中往 往使用输电线路的耐雷水平以及在遭受雷击时的跳 闸率作为衡量指标[3】。如何防护输电线路事故,尽 可能减少线路雷击害事故的次数提高线路运行的可 靠性,减少因线路故障带来的风电场经济损失一直 都是风电工程中关注的问题。 本文以辽宁地区某投运风电场线路防雷保护出 线的问题为例,结合历年雷击记录数据,分析了各 个风机避雷器动作频次与地形地貌、不同季节、线 图1 各台风机各相避雷器动作次数统计图 路相别的相关性,探讨了风电场集电线路避雷措施 适宜性,为今后风电场线路避雷措施提供了解决方 [ ] 1 案。 5 1 工程概况 { 42// 24 24 24 24/ 风电场集电线路是风电场主要组成部分,辽宁 25 西部某风电场安装单机容量1.5MW风力发电机组 1月2月j_月4月5月6月 66台,以6回35kV集电线路,接入风电场升压站, 图2 避雷器各月动作次数走势图 线路总长度31.5km,其中双回路2.7km,单回路 由图1、图2可知: 28.8km,每条线路各带11台风机。升压站内35kV 1)YB07一YBll风机避雷器动作次数占整条线 母线采用小电阻接地系统。 路动作次数的63.4%,明显高于其他风机,其中 该风电场集电线路位于山地及丘陵地区,经过 YB08风机避雷器动作次数最多A、B、C三相合计 多年运行发现,线路路编号为YB的集电线路每年 达20次。 2016 ̄6期电||l技术l167 ∞加制造商园地 2)YB07一YBll,4台风机的避雷器A、C两 6—9月份避雷器动作频次明显高于其他风机,占整 条线路动作次数的55%。 2.i线路断路器事故跳闸数据统计分析 2012年6月3日一2014年7月16日,YB线在 雷雨天事故跳闸统计见表1。 相的次数要明显高于B相,A相占42%、B相占41%, 占总数量的83%。 3)线路的避雷器动作次数从6月份开始明显增 加,7月份避雷器动作次数翻了一倍,6—9月份动 作次数占总数量的78%。YB07一YB11,4台风机在 表1 YB线事故统计表 序号 跳闸时间 保护装置动作情况 天气状况 设备情况 YB10风机箱变高压侧避雷器计数器A、B、C三相均动作一 l 2O12.O6.03 过流I段 雷雨天气 次,高压侧A、C相电缆头绝缘击穿,终端杆三相跌落保险全 部熔断跌落 2 2O12.O6—08 YB线零序I段、2 接地变 雷雨天气 YB07风机箱变高压侧避雷器计数器C相动作一次,高压侧 高零序和过流I段 3 20l2.06.22 过流I段,距离I段 YB线零序I段、2撑接地变 4 2013—03—09 高零序和过流I段 零序I段 风速过大 雷雨天气 C相电缆头击穿 YB线进户端铁塔避雷器计数器B、C相动作一次,故障录 波显示B、c相间短路 故障录波显示A、B、C三相电流越限启动, 故障录波显示三相电流不平衡,C相绝缘电阻降低,存在瞬 5 2013.05.19 雷雨天气 时性接地 6 2O13—10.01 YB线零序I段、2≠f接地变 动作 雷雨天气 YBl1号风机箱变高压侧c相避雷器绝缘击穿,高压侧避雷 器计数器A相动作一次 7 8 2014一O6.05 20l4—07.16 零序I段 零序I段 雷雨天气 雷雨天气 避雷器动作,YB11风机箱变高压侧熔断器A相绝缘击穿 风场集电线路零序I段保护动作跳闸,YB11箱变高压侧避 雷器计数器C相动作一次 注:查阅当地气象记录资料,线路跳闸当天均为雷暴日。 3线路跳闸原因分析 一从地形地貌来看,YB07一YB11风机集中布置 般而言,排除避雷器自身缺陷造成误动外, 在该风电场海拔高度约为850~1000m的同一山脊 上,该区域明显高出周边区域,YB08风机海拔高度 为1017m,YB07、YB11风机海拔高度为952m且 处于高山脊末端,分别位于最北与最南端。YB07一 YB11集电线路段共9基杆塔,其中5基为线路终端, 位于风机距离40m左右。该风场的风机轮毂高70m, 避雷器动作均由线路过电压引起。线路过电压包括 两种情况:①内部过电压:主要是有系统内部的设 备及操作设备时引起的过电压。②外部过电压:主 要为系统外部产生的过电压,如雷电、单相接地等 情况。由避雷器动作统计可知,集电线路避雷器动 作集中在6—9月份,正是该地区的雷雨季。季节和 地势高低的变化,不会导致集电线路正常运行时内 部过电压和避雷器动作机率明显增减,由此可以得 出避雷器动作次数大幅增加主要由雷电过电压引起。 风电场YB线在2012年一2014年7月的8次跳 闸事故中有7次保护动作可以判断是雷击直接造成 的,其中6次发生在持续雷雨天气并伴随相应避雷 器动作、4次绝缘击穿。造成线路两相接地短路1 次、单相接地短路4次,由此可见风电场集电线路 雷击对跳闸的影响很大。 风机接引器可以起到避雷针的作用,经计算风机保 护有效半径为50m,5基终端塔在其保护范围内, 其余4级线路杆塔不在其保护范围内,因此,遭受 雷击引起直击雷过电压使绝缘子串发生闪络事件较 多。 线路受到雷电绕击的可能性与杆塔高度、避雷 线#I- ̄U边导线的保护角度、地形地貌和地质条件有 关,山地类风电场集电线路的绕击率远远高于平地 线路。这就是风电场集电线路A、c相避雷器动作 次数最多的主要原因之一。 168l电|一l技琳2016 ̄6期 此外,风电场YB07一YB11风机区域为丘陵, 地下有铁矿、金矿等良导体金属矿产存在。一方面, 这些金属矿可能存在磁场聚集雷云;另一方面这些 金属良导体可能导致雷云对地放电,在线杆塔上造 成感应过电压,使避雷器或断路器动作。 由此得出,集电线路跳闸主要由于遭受雷电过 电压造成避雷器动作的增多,引起线路保护动作, 造成线路跳闸事故。 4防雷保护措施 通过分析上述的事故原因,结合工程需要,最 终本工程采用了以下方案解决线路过电压。 1)在工程实施过程中每基杆塔都敷设了接地装 置,并与地线牢靠连接,以使雷电流通过较低的接 地电阻泄入大地。在土壤电阻率较高地区架设线路 时,可以采取特殊的降阻方式,如增加埋设深度, 延长接地极的使用,就近增加垂直接地极或者接地 深井、接地模块等方式的运用。遭受雷击的线路集 中区域通过填充降阻剂或置换接地体附近小范围内 高电阻率土石等方法降低接地电阻。对山顶地势较 高处的风机杆塔或高土壤电阻率无避雷器的杆塔, 防止杆塔顶部的雷电场强发生畸变可采用伸长接地 体方式,将每根杆塔的接地装置连接起来,以形成 一条低电阻通道。 2)本工程原直线塔采用合成绝缘子,耐张塔采 用瓷绝缘子。鉴于YB线集电线路经常发生雷电过 电压,为进一步提升集电线路的绝缘水平,采用陶 瓷横担替代原镀锌铁横担。因为,耐雷水平与集电 线路的绝缘水平成正比,建议集电线路慎用合成绝 缘子,定期对零值绝缘子进行检测,保证高压集电 线路的绝缘强度。 3)在容易遭受雷击的重点区域加装避雷针装 置,与风机引雷装置形成联合保护,减少集电线路 遭受雷击概率,保护集电线路正常运行。 5 结论 风电场是利用风能转化为电能,风资源的好坏 制造商园地 决定了整个风场的效益,而风资源与海拔高度成正 比。为了使风机处于更好的风资源区域,风机往往 都会选择地势较高的位置,而这些海拔较高的位置 都伴随着更高的雷击风险。建议风电场在设计、建 设时应重点考虑以下方面: 1)采用架空集电线路时,集电线路采用双地线 设计,减少导线的保护角。地形比较复杂区域,可 以考虑增设耦合地线。 2)集电线路采用瓷绝缘子或玻璃绝缘予,并提 高杆塔的绝缘等级。 3)集电线路杆塔接地装置,在高土壤电阻率地 区时,应采用特殊接地方式,保证杆塔的接地电阻 长期有效。 4)集电线路杆塔上适度增设避雷器,并选用合 适的参数、保证避雷器的产品质量,加强日常维护。 5)对于高雷暴地区,建议采用电缆方案,避免 产生雷击事件。由于电缆为全绝缘体,在地中直埋, 电缆上部铺设避雷扁钢,可以有效的解决直击雷和 感应雷,并且在电缆头两端均设置避雷器,对电缆 进行保护。 6)本工程集电线路的防雷、接地的设计优于规 程要求,实际的雷击跳闸率低于该地区的电网系统 的跳闸率。但雷电活动随机性较强,不论采取何种 方案均有局限性,均不能完全保证免遭雷电灾害。 为提高集电线路的防雷水平,降低集电线路的雷击 跳闸率,需要全面考虑高压集电线路经过地区雷电 活动强弱程度、地形地貌特点和土壤电阻率等情况, 结合风电场集电线路设计方案以及系统运行方式 等,确定合理的防雷保护方案。 参考文献 [1]鲁肇东,戚宝钢.试论输电线路防雷技术[J].科技 与企业,2013(24):493. [2】元学军.浅析35kV架空线路的防雷保护技术[J].大 科技,2014(25):121.121,122. [3】 陈锐郭,王涛,蔡亮.当前输电线路的防雷措施的 探讨[J].中国新技术新产品,2011(15):100. 2016年第6期电号技术l169