您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页弹性力学本构方程刚度矩阵柔度矩阵

弹性力学本构方程刚度矩阵柔度矩阵

来源:化拓教育网


弹性力学本构方程刚度矩阵柔度矩阵

弹性力学本构方程刚度矩阵柔度矩阵弹性力学本构方程刚度矩阵柔度矩

中文名称:

弹性力学

英文名称:

theory of elasticity

其他名称:

弹性理论

定义:

研究弹性体在荷载等外来因素作用下所产生的应力、应变、位移和稳定性的学科。

所属学科:

水利科技(一级学科) ;工程力学、工程结构、建筑材料(二级学科) ;工程力学(水利)(三级学科)

弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件

在内的各种形状的弹性体。

弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。

弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。

弹性力学的发展大体分为四个时期。

人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。

发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822,1828年间,在A.-L?柯西发

表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。

弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别地提出了弹性体的变形和所受外力成正比的定律,后被

称为胡克定律。牛顿于1687年确立了力学三定律。

同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。

在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822,1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。

第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。

1855,1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的

证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;18年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。

在这个时期,弹性力学的一般理论也有很大的发展。一方面

建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利--里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。

从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建

立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。

弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或

平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式

和结论等,都可以从三大基本规律推导出来。

连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为

连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。

求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和应力共15 个函数。从理论上讲,只有15个函数全部确定后,问题才算解决。但在各种

实际问题中,起主要作用的常常只是其中的几个函数,有时甚至只是物体的某些部位的某几个函数。所以常常用实验和数学相结合的方法,就可求解。

数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、平面问题、变

截面轴扭转,回转体轴对称变形等方面。

在近代,经典的弹性理论得到了新的发展。例如,把切应力的成对性发展为极

性物质弹性力学;把协调方程(保证物体变形后连续,各应变分量必须满足的关系)

发展为非协调弹性力学;推广胡克定律,除机械运动本身外,还考虑其他运动形式

和各种材科的物理方程称为本构方程。对于弹性体的某一点的本构方程,除考虑该点

本身外还要考虑弹性体其他点对该点的影响,发展为非局部弹性力学等。

(1)假定物体是连续的,就是假定整个物体的体积都被组成这个物体的介质所

填满,不留下任何空隙。

(2)假定物体是完全弹性的,就是假定物体完全服从胡克定律--应变与引起该

应变的那个应力分量成比例。

(3)假定物体是均匀的,就是整个物体是由同一材料组成的。

(4)假定物体是各向同性的,就是物体内一点的弹性在所有各个方向都相同。

(5)假定位移和形变是微小的。

物理学概览、力学、热学、光学、声学、电磁学、核物理学、固体物理学

在各向同性线性弹性力学中,为了求得应力、应变和位移,先对构成物体的材料以及物体的变形作了五条基本假设,即:连续性假设、均匀性假设、各向同性假设、完全弹性假设和小变形假设,然后分别从问题的静力学、几何学和物理学方面出发,导得弹性力学的基本方程和边界条件的表达式。

分别表示杨氏弹性模量和泊松比。

在物体的表面,如已知面力,则边界条件表示为

这里的塣、墏、墫表示作用在物体表面的单位面积上的面力矢量的三个分量,表示物体表面外法线的三个方向余弦。

这样就将弹性力学问题归结为在给定的边界条件下求解一组偏侮分方程的问题。

主要解法式(1)、(2)、(3)中有15个变量,15个方程,在给定了边界条件后,从理论上讲应能求解。但由(2)、(3)式可见,应变分量、应力分量和位移分量之间不是彼此的,因此求解弹性力学问题通常有两条途径。其一是以位移作为基本变量,归结为在给定的边界条件下求解以位移表示的平衡微分方程,这个方程可以从(1)、(2)、(3)式中消去应变分量和应力分量而得到。其二是以应力作为基本变量,应力分量除了要满足平衡微分方程和静力边界条件外,为保证物体变形的连续性,对应的应变分量还须满足相容方程:

这组方程由几何方程消去位移分量而得到。对于不少具体问题,上述方程还可以简化。

在弹性力学中,为克服求解偏微分方程(或方程组)的困难,通常采用试凑法,即根据物体形状的几何特性和受载情况,去试凑位移分量或应力分量;由弹性力学

解的唯一性定理,只要所试凑的量满足全部方程和全部边界条件,即为问题的精确解。

从数学观点来看,弹性力学方程的定解问题可变为求泛函的极值问题。例如,对于用位移作为基本变量求解的问题,又可以归结为求解变分方程: П1是物体的总势能,它是一切满足位移边界条件的位移的泛函。对于稳定平衡状态,精确的位移将使总势能П1取最小值的称为最小势能原理。又如对于用应力作为基本变量求解的问题,可归结为求解变分方程:

П2为物体的总余能,它是一切满足平衡微分方程和静力边界条件的应力分量的泛函。精确的应力分量将使总余能П2取最小值的称为最小余能原理。(7)式等价于用位移表示的平衡微分方程和静力边界条件,而(8)式则等价于用应力表示的相容方程。在求问题的近似解时,上述泛函的极值问题又进而变为函数的极值问题,最后归结为求解线性非齐次代数方程组。

还有各种所谓的广义变分原理,其中最一般的是广义势能原理和广义余能原理,它们等价于弹性力学的全部基本方程和边界条件。但和总势能П1和总余能П2不同,广义势能和广义余能作为应力分量、应变分量和位移分量的泛函,对于精确解,也只取非极值的驻值。

由于弹性力学的基本方程是在弹性力学的五条基本假设下通过严密的数学推导得出的,因此弹性力学又称为数学弹性力学。而板壳力学则属于应用弹性力学。因为,它除了引用这五条基本假设外,还对变形和应力的分布作了一些附加假设。从这个意义上讲,材料力学也可纳入应用弹性力学。可见,虽然弹性力学和材料力学都研究杆状构件,但前者所获得的结果是比较精确的。

静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、

物理力学、天体力学、生物力学、计算力学、物理学、力学、热学、光学、声学、电磁学、核

物理学、固体物理学。

《弹性力学》是为土木工程专业本科生编写的弹性力学教材,《弹性力学》针对土木工程(应用)的特点,选材内容包括:弹性力学基本方程的建立、平面问题、空间轴对称问题、应力应变坐标变换、等截面直杆的扭转、薄板的小挠度弯曲、温度应力、变分原理。《弹性力学》同时介绍了弹性力学在土木工程中的一些重要应用实例,如:地基应力与沉降计算原理、混凝土板的计算方法、混凝土材料受拉劈裂试验的力学原理、混凝土结构温度裂缝分析、工程应变分析、结构中的剪力滞问题等。《弹性力学》覆盖的内容较宽,可作为土木工程专业本科生的教科书,也可供土木工程专业硕士研究生、工程硕士和结构工程参考。

本书为普通高等教育\"九五\"教育部重点教材,主要供高等学校工程力学专业作教材之用。.

本书共14章和两个补充材料,按应力、应变分析、应力应变关系、弹性力学的一般原理、平面问题的解答、空间问题的解答、热应力、弹性波的传播、弹性薄板的弯曲和弹性力学的变分解法的顺序编排。既包括了经典内容,又反映了该学科领域的若干新发展。内容选择和叙述方法方面,在充分注意到理论的系统性、完整性和严密性的前提下,更注意深入浅出,重点突出,难点分散,联系工程实际,强调问题的物理本质,便于学生理解和掌握。两个附录为:笛卡儿张量简洁和弹性力学基本方程的曲线坐标形式。

本书还可作为工科研究生和相关专业本科生的教材或教学参考书,也可供研究人员和工程技术人员参考。

吴家龙,1932年生,江苏省海门县人。同济大学工程力学与技术系教授,硕士生导师。1957年毕业于北京大学数学力学系力学专业。早年从事力学基础课教学,60年代后转为固体力学

和边疆介质力学的教学和研究。曾为《中国大百科全书》(土木卷)和《力学词典》撰稿,参加了《工程力学手册》的编写,并担任该手册弹塑性力学篇编委。从《应用数学和力学》创刊至2002年,一直为该刊物的编委,1996的退休。

第二章应力状态理论

第三章应变状态理论

第四章应力和应变的关系

第五章弹性力学问题的建立和一般原理

第六章平面问题的直角坐标解答

第七章平面问题的极坐标解答

第八章 -平面问题的复变函数解答

第九章柱形杆的扭转和弯曲

第十章空间问题的解答

第十二章弹性波的传播

第十三章弹性薄板的弯曲

第十四章弹性力学的变分解法

补充材料A 笛卡几张量简介

补充材料B 弹性力学基本方程的曲线坐标形式

外国人名译名对照表

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务