珠海市2012届高三第二次调研
理科数学
一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置填涂答案)
1.已知全集UR,集合A{x||x1|1},则CUA等于( C ) A.(,0] B. [2,) C.(,0][2,) D.[0,2] 2.等比数列{an}中,a112,又a1a4a2a34,则公比q
A.2 B.23 C.2 D.3
3.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是 ( ) A.4+8i B.8+2i C.2+4i D.4+i 4.已知a、b是实数,则“a>1,b>2”是“a+b>3且ab>2”的
A.充分而不必要条件 B.必要而不充分条件 C.充分且必要条件 D.既不充分也不必要条
5. ABC中,角A、B、C所对的边a、b、c,若a451253,A3,cosB55,则b
A.
855 B.
255 C.5 D.
5
7)=
6.已知函数f(x)满足:当x1时,f(x)=f(x1);当x<1时,f(x)=2x,则f(log7772A.
716 B.8 C.4 D.2
7.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:
喜欢玩电脑游戏 不喜欢玩电脑游戏 总数 认为作业多 18 8 26 认为作业不多 9 15 24 总数 27 23 50 1
根据表中数据得到k50(181589)2723242625.059,参考下表:
P(K2≥k) k 0.050 3.841 0.025 5.024 0.010 6.635 0.001 10.828
则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( ) A.97.5% B.95% C.90% D.99.9%
A.16 B.17 C. 18 D.19
二、填空题:本大题共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.答案请填在答题卡上.
9.(理科)某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有学生____人.
10.(理科)已知单位向量a,b,其夹角为,则ab=__________
3211.(理科)已知随机变量~N(2,),P(1)
v48. 起点到终点的最短距离为( )
起点v08v2523244终点v67v1v36v534,P(5) . 12.下图是一个几何体的三视图,根据图中数据可得该几何体的表面积是_________;
13.甲乙两艘船都要在某个泊位停靠,若分别停靠4小时、8小时,假定它们在一昼夜的时间段内任意时刻到达,则这两艘船中有一艘在停靠泊位时必须等待的概率为 . 14.(坐标系与参数方程选做题). 如图,PA是圆的切线,A为切点,PBC是圆的割线,且
PBBC12PABCC . B P
,则 .
A 15.(坐标系与参数方程选做题)曲线4cos关于直线为 。
2
4对称的曲线的极坐标方程
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分12分)在平面直角坐标系xoy中,以ox轴为始边做两个锐角,,它们的
1010终边都在第一象限内,并且分别与单位圆相交于A,B两点,已知A点的纵坐标为,B点的
纵坐标为
210.(1)求tan和tan的值;(2) 求2的值.
17.(本小题满分12分)某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,
抽取其中50个样本,将测试结果按如下方式分成五组:第一组13,14),第二组14,15),„,第五组17,18,下图是按上述分组方法得到的频率分布直方图.
(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数; (2)请估计本年级900名学生中,成绩属于第三组的人数;
(3)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽2个同学组成一个实验组,设其中男同学的数量为,求的分布列和期望.
3
频率组距0.380.320.160.080.06O131415161718秒
18.(本小题满分14分)如图,长方体ABCDA1B1C1D1中,CC14,ABBC3. (1)若E、F分别是BC1、A1C1中点,求证EF//平面DCC1; (2)求二面角A1BC1D的正弦值.
4
19.(本小题满分14分)已知圆C方程:(x-1)+ y=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且
|PC||PQ|122
2
;
(1)求点P的轨迹方程;
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与x,y轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.
20.(本小题满分14分)已知函数fx13xaxbx32a,bR.
(Ⅰ)若曲线C:yfx经过点P1,2,曲线C在点P处的切线与直线2xy30平行,求a,b的值;
2(Ⅱ)在(Ⅰ)的条件下,试求函数gxm1fx7x(m为实常数,m1)3的极大值与极小值之差;
(Ⅲ)若fx在区间1,2内存在两个不同的极值点,求证:0ab2.
5
521.已知函数f(x)cosx,g(x)2x,数列{xn}满足:x1(,
6,6)g(xn1)2nf(xn)(nN),
*(1) 当2时,求x2,x3的值并写出数列{xn}的通项公式(不要求证明);
(2) 求证:当x0时,xf'(x)x;
(3) 求证:x1
2x22x32xn12*(nN)。
6
数学理参
一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置填涂答案) 1.C 2.A 3.C 4.A 5. C 6.C 7.A
8.B
二、填空题:本大题共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.答案请填在答题卡上. 9. 3700 10. 3
1
11. 4
5112. 2
3113. 72
314. 2 15. 4sin
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
16.解: 本小题考查三角函数的定义、两角和的正切、二倍角的正切公式。 (1)由条件得 sin110, sin152 „„„„„„„„„„„„„„„„2分
为锐角,故 cos0且cos1317310 ,同理可得cos752 „„„„„4分
因此tan,tan。 „„„„„„„„„„„„„„„„6分
7
(2)tan13,tan17
11tantantan1tantan371„„„„„„„„„„„„„„„„7分 1121371tantan()1tantan()321 „„„„8分 111321tan2tan()02,ytanx在(0,42)上单调递增,
且tan1tan同理0从而
4 ,∴044,„„„„„10分 „„„„„11分
,∴02432 „„„„„„12分
17. 频率 组距0.38
0.32 0.16 解:(1)由频率分布直方图知,成绩在第一组的为优秀,频率为0.06, 0.08人数为:50×0.06=3 0.06所以该样本中成绩优秀的人数为3。 „„„„„„„„ 3分 (2)由频率分布直方图知,成绩在第三组的频率0.38,以此估计本年级900名学生成绩属O于第三组的概率为0.38, 人数为:900×0.38=342
所以估计本年级900名学生中,成绩属于第三组的人数为342。„„„ 7分 (3)的可能取值为1,2,3;
131415161718秒 8
p(1)C1C2C3C1C0112023CC1C3C420224131„„„ 8分
p(2)C2C1C322C2C1C321C1C3C421112„„„ 9分
p(3)C2C1C2320C1C3C241116„„„ 10分
的分布列为
P 1 1/32 1/23 1/6 „„ 11分
∴
E1p(1)2p(2)3p(3)116156
„„ 12分
18..
9
(Ⅰ)证明:连接D1B1、B1C,则长方体ABCDA1B1C1D1中,
BC1B1CE,D1B1A1C1F,
E、F分别是B1D1和B1C的中点
EFD1C„„„„„„„„„„„„„„„„„„„„„„„2分 EF平面DCC1 „„„„„„„„„„„„„„„„„„4分
(Ⅱ)解:(理)连接AC设交BD于O,连接A1O、C1O
正方形ABCD中ACBD,又AA1平面ABCD
AA1BD
BD平面AA1C1C„„„„„„„„„„„5分
过A1作A1HC1O于H,作A1GC1B于G,连接GH、BF
A1HBD
A1H平面BDC1 „„„„„„„„„„„„6分 BC1A1H BC1平面A1HG
BC1HG „„„„„„„„„„„„„„8分 A1GH就是二面角A1BC1D„„„„„„„„„„10分
ABBC3,CC14
A1BBC15,A1C1BD32 A1HAA1A1C1OC124414041,A1GBFA1C1BC13415„„„„„12分
sinA1GH
A1HA1G
10
二面角A1BC1D的正弦值是
19. 解
:(
1
)
设
P4041 „„„„„„„„14分
点坐标为
(xy,,„„„„„„„„„„„„„„„„„„„„
„„1分
则PQ4x,„„„„„„„„„„„„„„„„„„„„„„„„2分
PC(x1)y„„„„„„„„„„„„„„„„„„„„„„„„3分
22因为
|PC||PQ|x2y122,所以(x1)y4x2212, „„„„„„„„„„„„„4分
化简得
431„„„„„„„„„„„„„„„„„„„„„„„„5分
x2所以点P的轨迹方程是
4y231„„„„„„„„„„„„„„„„„6分
(2)依题意得,A点坐标为(2,0),B点坐标为(0,3)„„„„„„„„„„„„„7分
设D点坐标为(2cos,3sin),(02),„„„„„„„„„„„„„„„„8分
则四边形OADB的面积S四边形OADBSOAD+SOBD,„„„„„„„„„„„„„„„9分
1223sin1232cos„„„„„„10分
3(sincos)
11
6sin(4)„„„„„„„„„„„„„„11分
又因为0所以222,所以
44+434„„„„„„„„„„„„„„„„„„„12分
4)6sin()1,即36sin(
所以四边形OADB的最大面积为6,„„„„„„„„„„„„„„„13分
当四边形OADB的面积取最大时,此时D点坐标为(2,
20. 解:(Ⅰ)fx13232xaxbxfxx2axb,„„„„„„„„„1分
4=2,即=4,
分
62)„„„„„„„„„„„„„„„„„„„„„„„„14
直线2xy30的斜率为2,曲线C在点P处的切线的斜率为2,
f112ab2„„① „„„„„„„„„„„„„„„2分
曲线C:yff113x经过点P1,2,
ab2„„② „„„„„„„„„„„„„„„3分
2a,3由①②得: „„„„„„„„„„„„„„„„„„„„„„„„„„4分
7b.3(Ⅱ)由(Ⅰ)知:fx13x323x273x,gxm132x32x2,
442gxm1xx, 由gx0x0,或x.„„„„„5分
33当m210,即m1,或m1时,x,gx,gx变化如下表
x gx ,0 + 0 40, 343 4,3 0 - 0 + 12
gx 极大值 极小值 由表可知: 4gx极大gx极小g0g03323222m1m1 „„„„„7分 8181当m210,即1m1时,x,gx,gx变化如下表
x gx gx ,0 - 0 40, 343 4,3 0 极小值 + 0 极大值 - 由表可知: 3232422gx极大gx极小gg0m10m1„„„„„„8分 81813综上可知:当m1,或m1时,gx极大gx极小当1m1时,gx极大gx极小32m81232m8121;
1„„„„„„„„„„„„„„9分
(Ⅲ)因为fx在区间1,2内存在两个极值点 ,所以f(x)0, 即x22axb0在(1,2)内有两个不等的实根. f(1)12ab0,f(2)44ab0,∴1a2,4(a2b)0.(1)(2)(3)(4) „„„„„„„„„„„„„„„„„„„„„„11分
由 (1)+(3)得:ab0, „„„„„„„„„„„„„„„„„„„„„12分 由(4)得:aba2a,由(3)得:2a1,
aa(a212)2142,∴ab2. „„„„„„„„„„13分
故0ab2 „„„„„„„„„„„„„„„„„„„„„„„„„„„„14分 21.
13
(1)解:x2x32,xn2, „„„„„„„„„„„„„„2分
(2)证明:设F(x)f'(x)xsinxx,则F'(x)cosx10,
∴F(x)在[0,)上为减函数,即F(x)F(0)0,即f'(x)x,„„„„„„4分 设H(x)f'(x)xsinxx,则H'(x)cosx10,
∴H(x)在[0,)上为增函数,即H(x)H(0)0,即f'(x)x,„„„„„„5分 ∴当x0时,xf'(x)x。 „„„„„„„„„„„„„„6分 (3)由(1)知:当x0时,|f'(x)||x|,
同理可证:当x0时,|f'(x)||x|,即对xR,恒有:|f'(x)||x|。„„„„7分 由g(xn1)∴xn12nf(xn)(nN)得:xn1*21ncosxn,
21n1cosxn1nsin(xn2)1nxn2 (nN*) „„„„„„8分
∴xn2n1xn12,xn121n2xn22,„„,x22x12,
从而xn21(n1)!2, „„„„„„„„„„„„„„„„10分
x12x22x32xn111111 „11分 21!1!2!3!n!21 n122 1112122 12(1211 „„„„„„„13分 )3nn122225(,66 )* 3∴x1
2x22x32xn12(nN)成立。 „„„„„„„14分
14