您好,欢迎来到化拓教育网。
搜索
您的当前位置:首页珠海市2012届高三第二次调研(理数)

珠海市2012届高三第二次调研(理数)

来源:化拓教育网


珠海市2012届高三第二次调研

理科数学

一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置填涂答案)

1.已知全集UR,集合A{x||x1|1},则CUA等于( C ) A.(,0] B. [2,) C.(,0][2,) D.[0,2] 2.等比数列{an}中,a112,又a1a4a2a34,则公比q

A.2 B.23 C.2 D.3

3.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是 ( ) A.4+8i B.8+2i C.2+4i D.4+i 4.已知a、b是实数,则“a>1,b>2”是“a+b>3且ab>2”的

A.充分而不必要条件 B.必要而不充分条件 C.充分且必要条件 D.既不充分也不必要条

5. ABC中,角A、B、C所对的边a、b、c,若a451253,A3,cosB55,则b

A.

855 B.

255 C.5 D.

5

7)=

6.已知函数f(x)满足:当x1时,f(x)=f(x1);当x<1时,f(x)=2x,则f(log7772A.

716 B.8 C.4 D.2

7.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:

喜欢玩电脑游戏 不喜欢玩电脑游戏 总数 认为作业多 18 8 26 认为作业不多 9 15 24 总数 27 23 50 1

根据表中数据得到k50(181589)2723242625.059,参考下表:

P(K2≥k) k 0.050 3.841 0.025 5.024 0.010 6.635 0.001 10.828

则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( ) A.97.5% B.95% C.90% D.99.9%

A.16 B.17 C. 18 D.19

二、填空题:本大题共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.答案请填在答题卡上.

9.(理科)某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有学生____人.

10.(理科)已知单位向量a,b,其夹角为,则ab=__________

3211.(理科)已知随机变量~N(2,),P(1)

v48. 起点到终点的最短距离为( )

起点v08v2523244终点v67v1v36v534,P(5) . 12.下图是一个几何体的三视图,根据图中数据可得该几何体的表面积是_________;

13.甲乙两艘船都要在某个泊位停靠,若分别停靠4小时、8小时,假定它们在一昼夜的时间段内任意时刻到达,则这两艘船中有一艘在停靠泊位时必须等待的概率为 . 14.(坐标系与参数方程选做题). 如图,PA是圆的切线,A为切点,PBC是圆的割线,且

PBBC12PABCC . B P

,则 .

A 15.(坐标系与参数方程选做题)曲线4cos关于直线为 。

2

4对称的曲线的极坐标方程

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)在平面直角坐标系xoy中,以ox轴为始边做两个锐角,,它们的

1010终边都在第一象限内,并且分别与单位圆相交于A,B两点,已知A点的纵坐标为,B点的

纵坐标为

210.(1)求tan和tan的值;(2) 求2的值.

17.(本小题满分12分)某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,

抽取其中50个样本,将测试结果按如下方式分成五组:第一组13,14),第二组14,15),„,第五组17,18,下图是按上述分组方法得到的频率分布直方图.

(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数; (2)请估计本年级900名学生中,成绩属于第三组的人数;

(3)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽2个同学组成一个实验组,设其中男同学的数量为,求的分布列和期望.

3

频率组距0.380.320.160.080.06O131415161718秒

18.(本小题满分14分)如图,长方体ABCDA1B1C1D1中,CC14,ABBC3. (1)若E、F分别是BC1、A1C1中点,求证EF//平面DCC1; (2)求二面角A1BC1D的正弦值.

4

19.(本小题满分14分)已知圆C方程:(x-1)+ y=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且

|PC||PQ|122

2

(1)求点P的轨迹方程;

(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与x,y轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.

20.(本小题满分14分)已知函数fx13xaxbx32a,bR.

(Ⅰ)若曲线C:yfx经过点P1,2,曲线C在点P处的切线与直线2xy30平行,求a,b的值;

2(Ⅱ)在(Ⅰ)的条件下,试求函数gxm1fx7x(m为实常数,m1)3的极大值与极小值之差;

(Ⅲ)若fx在区间1,2内存在两个不同的极值点,求证:0ab2.

5

521.已知函数f(x)cosx,g(x)2x,数列{xn}满足:x1(,

6,6)g(xn1)2nf(xn)(nN),

*(1) 当2时,求x2,x3的值并写出数列{xn}的通项公式(不要求证明);

(2) 求证:当x0时,xf'(x)x;

(3) 求证:x1

2x22x32xn12*(nN)。

6

数学理参

一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置填涂答案) 1.C 2.A 3.C 4.A 5. C 6.C 7.A

8.B

二、填空题:本大题共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.答案请填在答题卡上. 9. 3700 10. 3

1

11. 4

5112. 2

3113. 72

314. 2 15. 4sin

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.解: 本小题考查三角函数的定义、两角和的正切、二倍角的正切公式。 (1)由条件得 sin110, sin152 „„„„„„„„„„„„„„„„2分

为锐角,故 cos0且cos1317310 ,同理可得cos752 „„„„„4分

因此tan,tan。 „„„„„„„„„„„„„„„„6分

7

(2)tan13,tan17

11tantantan1tantan371„„„„„„„„„„„„„„„„7分 1121371tantan()1tantan()321 „„„„8分 111321tan2tan()02,ytanx在(0,42)上单调递增,

且tan1tan同理0从而

4 ,∴044,„„„„„10分 „„„„„11分

,∴02432 „„„„„„12分

17. 频率 组距0.38

0.32 0.16 解:(1)由频率分布直方图知,成绩在第一组的为优秀,频率为0.06, 0.08人数为:50×0.06=3 0.06所以该样本中成绩优秀的人数为3。 „„„„„„„„ 3分 (2)由频率分布直方图知,成绩在第三组的频率0.38,以此估计本年级900名学生成绩属O于第三组的概率为0.38, 人数为:900×0.38=342

所以估计本年级900名学生中,成绩属于第三组的人数为342。„„„ 7分 (3)的可能取值为1,2,3;

131415161718秒 8

p(1)C1C2C3C1C0112023CC1C3C420224131„„„ 8分

p(2)C2C1C322C2C1C321C1C3C421112„„„ 9分

p(3)C2C1C2320C1C3C241116„„„ 10分

的分布列为

P  1 1/32 1/23 1/6 „„ 11分

E1p(1)2p(2)3p(3)116156

„„ 12分

18..

9

(Ⅰ)证明:连接D1B1、B1C,则长方体ABCDA1B1C1D1中,

BC1B1CE,D1B1A1C1F,

E、F分别是B1D1和B1C的中点

EFD1C„„„„„„„„„„„„„„„„„„„„„„„2分 EF平面DCC1 „„„„„„„„„„„„„„„„„„4分

(Ⅱ)解:(理)连接AC设交BD于O,连接A1O、C1O

正方形ABCD中ACBD,又AA1平面ABCD

AA1BD

BD平面AA1C1C„„„„„„„„„„„5分

过A1作A1HC1O于H,作A1GC1B于G,连接GH、BF

A1HBD

A1H平面BDC1 „„„„„„„„„„„„6分 BC1A1H BC1平面A1HG

BC1HG „„„„„„„„„„„„„„8分 A1GH就是二面角A1BC1D„„„„„„„„„„10分

ABBC3,CC14

A1BBC15,A1C1BD32 A1HAA1A1C1OC124414041,A1GBFA1C1BC13415„„„„„12分

sinA1GH

A1HA1G

10

二面角A1BC1D的正弦值是

19. 解

:(

1

P4041 „„„„„„„„14分

点坐标为

(xy,,„„„„„„„„„„„„„„„„„„„„

„„1分

则PQ4x,„„„„„„„„„„„„„„„„„„„„„„„„2分

PC(x1)y„„„„„„„„„„„„„„„„„„„„„„„„3分

22因为

|PC||PQ|x2y122,所以(x1)y4x2212, „„„„„„„„„„„„„4分

化简得

431„„„„„„„„„„„„„„„„„„„„„„„„5分

x2所以点P的轨迹方程是

4y231„„„„„„„„„„„„„„„„„6分

(2)依题意得,A点坐标为(2,0),B点坐标为(0,3)„„„„„„„„„„„„„7分

设D点坐标为(2cos,3sin),(02),„„„„„„„„„„„„„„„„8分

则四边形OADB的面积S四边形OADBSOAD+SOBD,„„„„„„„„„„„„„„„9分

1223sin1232cos„„„„„„10分

3(sincos)

11

6sin(4)„„„„„„„„„„„„„„11分

又因为0所以222,所以

44+434„„„„„„„„„„„„„„„„„„„12分

4)6sin()1,即36sin(

所以四边形OADB的最大面积为6,„„„„„„„„„„„„„„„13分

当四边形OADB的面积取最大时,此时D点坐标为(2,

20. 解:(Ⅰ)fx13232xaxbxfxx2axb,„„„„„„„„„1分

4=2,即=4,

62)„„„„„„„„„„„„„„„„„„„„„„„„14

直线2xy30的斜率为2,曲线C在点P处的切线的斜率为2,

f112ab2„„① „„„„„„„„„„„„„„„2分

曲线C:yff113x经过点P1,2,

ab2„„② „„„„„„„„„„„„„„„3分

2a,3由①②得: „„„„„„„„„„„„„„„„„„„„„„„„„„4分

7b.3(Ⅱ)由(Ⅰ)知:fx13x323x273x,gxm132x32x2,

442gxm1xx, 由gx0x0,或x.„„„„„5分

33当m210,即m1,或m1时,x,gx,gx变化如下表

x gx ,0 + 0 40, 343 4,3 0 - 0 + 12

gx 极大值 极小值 由表可知: 4gx极大gx极小g0g03323222m1m1 „„„„„7分 8181当m210,即1m1时,x,gx,gx变化如下表

x gx gx ,0 - 0 40, 343 4,3 0 极小值 + 0 极大值 - 由表可知: 3232422gx极大gx极小gg0m10m1„„„„„„8分 81813综上可知:当m1,或m1时,gx极大gx极小当1m1时,gx极大gx极小32m81232m8121;

1„„„„„„„„„„„„„„9分

(Ⅲ)因为fx在区间1,2内存在两个极值点 ,所以f(x)0, 即x22axb0在(1,2)内有两个不等的实根. f(1)12ab0,f(2)44ab0,∴1a2,4(a2b)0.(1)(2)(3)(4) „„„„„„„„„„„„„„„„„„„„„„11分

由 (1)+(3)得:ab0, „„„„„„„„„„„„„„„„„„„„„12分 由(4)得:aba2a,由(3)得:2a1,

aa(a212)2142,∴ab2. „„„„„„„„„„13分

故0ab2 „„„„„„„„„„„„„„„„„„„„„„„„„„„„14分 21.

13

(1)解:x2x32,xn2, „„„„„„„„„„„„„„2分

(2)证明:设F(x)f'(x)xsinxx,则F'(x)cosx10,

∴F(x)在[0,)上为减函数,即F(x)F(0)0,即f'(x)x,„„„„„„4分 设H(x)f'(x)xsinxx,则H'(x)cosx10,

∴H(x)在[0,)上为增函数,即H(x)H(0)0,即f'(x)x,„„„„„„5分 ∴当x0时,xf'(x)x。 „„„„„„„„„„„„„„6分 (3)由(1)知:当x0时,|f'(x)||x|,

同理可证:当x0时,|f'(x)||x|,即对xR,恒有:|f'(x)||x|。„„„„7分 由g(xn1)∴xn12nf(xn)(nN)得:xn1*21ncosxn,

21n1cosxn1nsin(xn2)1nxn2 (nN*) „„„„„„8分

∴xn2n1xn12,xn121n2xn22,„„,x22x12,

从而xn21(n1)!2, „„„„„„„„„„„„„„„„10分

x12x22x32xn111111 „11分 21!1!2!3!n!21 n122 1112122 12(1211 „„„„„„„13分 )3nn122225(,66 )* 3∴x1

2x22x32xn12(nN)成立。 „„„„„„„14分

14

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo9.cn 版权所有 赣ICP备2023008801号-1

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务