广东金融学院期末考试试题(A) (闭卷 120分钟)
一、填空题(每题3分,共15分)
1、设总体7623025570eda2a94b418a67448a9c.png,707f330241f247eb134f27ddc6f55e.png,57dc5e29b8ba3d9138cc5909983d3ca8.png为02129bb861061d1a052c592e2dc6b383.png的样本,则f07369a6056cdbec15a98abb75.png ,
069f6b3bd74e303e9475fc01bdcd70.png
2、设1ce0cdaf66b9bf4b74d1f118c30080ef.png和9a7d004a1fef4e826bf6168e69fb4b0c.png为总体34fc27f7a7cf0ce5fa1f434ee74d2db6.png的样本均值和方差,若cd43818427a16cf0ad54444ba8b6b4f7.png为683c35ce4b8a6073bdde632ed7367a3c.png的无偏估计量,则7de211558c5b2e4d2d6d255f028a1e1a.png
3、设57dc5e29b8ba3d9138cc5909983d3ca8.png,d4624d9f8ea6bc23d0ceb00fff2f908e.png是来自总体4933b2177b4ff299fce4cd4baccf1b84.png,b4cc03efa57887965aab5cbf352e86f9.png的样本,且相互,其中528d5f57bc2d21d4efc9f53c88030741.png已知,当检验40a553d7fe56e6529bdad22328475236.png时,应选择统计量
4、一元回归分析中,8006143025315f869e4e1f09471012.png检验法的统计量72b31f588a7efaa7973b9ae8d737a1.png ,其分布为
5、单因素方差分析模型为
二、选择题(每题3分,共15分)
1、设总体d3df27a663e59329cfb601c98cfd133c.png,其中a1155692e3f69913320174f980c7eaf1.png已知,557e26001dc70335783de7dc96943f03.png未知,2ad86a5aa47552d5b8edba07194a.png是来自02129bb861061d1a052c592e2dc6b383.png的样本,则下列选项中不是统计量的是( )
(A)de78309b2c34cdd0877816b06de395c7.png, (B)8295af45d1a2431765a94c31082f6916.png,
(C)6eb79e49d519b8a1eaa9cbe8ea9cd0.png, (D)2badf66a33778b8c30907bc43655bbd3.png
2、设总体d3df27a663e59329cfb601c98cfd133c.png,则a1155692e3f69913320174f980c7eaf1.png的置信区间长度d20caec3b48a1eef1cb4ca81ba2587.png与置信度210a79ce5b08f2218f4ba1d90bfcd3.png的关系为( )
(A)210a79ce5b08f2218f4ba1d90bfcd3.png减小时d20caec3b48a1eef1cb4ca81ba2587.png变小, (B)210a79ce5b08f2218f4ba1d90bfcd3.png减小时d20caec3b48a1eef1cb4ca81ba2587.png增大,
(C)210a79ce5b08f2218f4ba1d90bfcd3.png减小时d20caec3b48a1eef1cb4ca81ba2587.png不变, (D)210a79ce5b08f2218f4ba1d90bfcd3.png减小时d20caec3b48a1eef1cb4ca81ba2587.png增减不定
3、设总体02129bb861061d1a052c592e2dc6b383.png服从参数为6af8e2f02f674b41b6ccf43debc252d2.png的泊松分布,57dc5e29b8ba3d9138cc5909983d3ca8.png是取自02129bb861061d1a052c592e2dc6b383.png的简单随机样本,已知
f2f771c393c00d7c65b52eab5e916155.png为6af8e2f02f674b41b6ccf43debc252d2.png的无偏估计量,则5ba758f9b6f95cbaf66abc24859213.png( )
(A)768a1ed60006f190faf91d734c1c8236.png, (B)cfcd208495d565ef66e7dff9f987da.png, (C)93b05c90d14a117ba52da1d743a43ab1.png, (D)c4ca4238a0b923820dcc509a6f75849b.png
4、设2ad86a5aa47552d5b8edba07194a.png是来自02129bb861061d1a052c592e2dc6b383.png的样本,则在下列cc8ee37afb5c0c9613473c98a3c6ebc1.png的估计量中最有效的是( )
(A)4e6db1ba660101d62222b5e88fa376.png, (B)02e48edac6039bac44c45822127a91.png,
(C)8b6053a3b05fd2b1ed62df43d1defff5.png, (D)41bf5e9ed98a9ba86235c26e657b1a51.png
5、设总体d3df27a663e59329cfb601c98cfd133c.png,557e26001dc70335783de7dc96943f03.png已知,若样本容量7b8b965ad4bca0e41ab51de7b31363a1.png和置信度210a79ce5b08f2218f4ba1d90bfcd3.png均不变,则对于不同的样本观测值,a1155692e3f69913320174f980c7eaf1.png的置信区间长度( )
(A)变长, (B)变短, (C)保持不变, (D)不能确定
三、(5分)从正态总体db90d4db12304fc08009f15d5b60998b.png中抽取容量为7b8b965ad4bca0e41ab51de7b31363a1.png的样本,若保证a1155692e3f69913320174f980c7eaf1.png的置信度为0.95的置信区间的长度小于2,则7b8b965ad4bca0e41ab51de7b31363a1.png至少取多大?
四、(5分)设dde62df70794d1909c3bd9eebc8fb12b.png是总体7754e9cbde8a85cf21eb323ce3c691a6.png的样本,证明
fa770f1234f32261105ccb74da6619cb.png.
五、(10分)设总体dc5bd04f6b2da2ddfe17128e287286a9.png,9a33dca34e41b80946cb7f36d5d6d6d8.png是来自02129bb861061d1a052c592e2dc6b383.png的样本,求f40decd493de4d5518077cf3be0e4336.png,7619c00dd7ce0915f45256187d4adf.png和ffc95ee0a49f5ec8639e571eb2cfa559.png.
六、(10分)设总体02129bb861061d1a052c592e2dc6b383.png的密度函数为773f922f9b450fad2548c901b0b2b7e9.png;其中3d19c415568f9039e4c267fa8f27a70d.png是未知参数,57dc5e29b8ba3d9138cc5909983d3ca8.png是取自02129bb861061d1a052c592e2dc6b383.png的简单随机样本,(1)求7943b5fdf911af3ffcf9d8f738478e8a.png的矩估计量;(2)求7943b5fdf911af3ffcf9d8f738478e8a.png的极大似然估计量.
七、(10分)设e0d067ef6c317ccb2427b5a31ef93565.png是来自均值为7943b5fdf911af3ffcf9d8f738478e8a.png的指数分布总体的样本,其中7943b5fdf911af3ffcf9d8f738478e8a.png未知,设有估计量db93cef1802a9fb1fd87939017c21d38.png,93df039502417ec0d252ba10bceff14f.png,
03c81ab4e2b16f088524721b5e159ddc.png,(1)指出39331fe84f9ea9d53f09aac923bb42c4.png中哪几个是7943b5fdf911af3ffcf9d8f738478e8a.png的无偏估计量;(2)无偏估计量中哪一个较为有效?
八、(15分)某厂生产的零件质量d3df27a663e59329cfb601c98cfd133c.png,现从这批零件中随机的抽取9个样本,则得样本质量均值为8d7fb72d61e9bf7183c2cee9c6ecbd4f.png,样本方差为e4a5c8a45ea699800d70a25ac5e65745.png,试在置信度为0.95下,分别求参数9082118b882aef5af72dc1b3fe72f746.png的置信区间.
九、(15分)设某次考试的学生成绩服从正态分布,从中随机的抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,(1)问在显著水平6393b58e6e07308aef0f7e8ccd4a68.png下,是否可以认为这次考试全体考生的平均成绩为70分?(2)在显著水平6393b58e6e07308aef0f7e8ccd4a68.png下,是否可以认为这次考试考生的成绩的方差为9c0652f3a9e8390c60f9e278f4481388.png?
参考数据:
7983ffe504ffcddb61c350fb4d5ec0dc.png,e4db475314ec211b00b67984ebe93047.png,8b2288eaba0debc88e4ef167d095d78d.png,74155673a34861a8e485cfe214ff0765.png,8c18be53bb041069abd6b69a77fb82fe.png,0bdeee5bdf2749a6d4c13002e2be502b.png,3a7a65459fd2d9c69fffedd42c433df5.png,5a3ed6d30db40aad7500a8cdbdb1c5.png,f045554e95ea560ac0cab887680fbb4c.png,