图像阈值:
ret, dst = cv2.threshold(src, thresh, maxval, type)
代码中存在四个参数:src,dst,thresh,maxval
src: 输入图,只能输入单通道图像,通常来说为灰度图
dst: 输出图
thresh: 阈值,不是百分比类型,阈值是一个实际的值,比如说比较常见的127(因为像素点的取值范围是从0~255,经常以127作为判断值)
maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
type:怎样去判断阈值、判断阈值后怎么处理都由type这个参数来决定
二值化操作的类型,包含以下5种类型:
(1)cv2.THRESH_BINARY
超过阈值部分取maxval(最大值),否则取0
例如像素值超过127时,取255
(2)cv2.THRESH_BINARY_INV THRESH_BINARY的反转
此时像素值超过127时,取0
(3)cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
相当于做了一个截断,当像素点超过127时,等于127
(4)cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
像素值大于127时,也就是亮的部分保持不变,小于127的部分变成0,即变成黑色
(5)cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
是前一种的翻转
效果图如下:
代码:
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
titles = [‘Original Image’, ‘BINARY’, ‘BINARY_INV’, ‘TRUNC’, ‘TOZERO’, ‘TOZERO_INV’]
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
plt.subplot(2, 3, i + 1), plt.imshow(images[i], ‘gray’)
plt.title(titl